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All schemes are assumed to be of finite type over an algebraically closed field k. For us
a variety is a k-scheme, which is in addition integral and separated.

1 The ample cone

We complete talk 2 on the ample cone. We assume that X is a proper variety over k.
The reference for this section is [CLS11, §6].

Definition 1.0.1. The Picard group Pic(X) is the group of isomorphism classes of
invertible OX -modules with ⊗OX

as group multiplication.

Definition 1.0.2. We say that two invertible sheaves L1 and L2 on X are algebraically
equivalent, if there exists a connected k-variety and y1, y2 ∈ Y (k) and an invertible sheaf
L on X × Y , such that L|Xyi

∼= Li for i = 1, 2. We define Pic0(X) as the subgroup
of invertible sheaves which are algebraically equivalent to OX . The quotient NS(X) :=
Pic(X)/ Pic0(X) is called the Néron-Severi group of X. We define N1

R(X) := NS(X)⊗ZR.

If X is a projective variety, then Pic(X) is the group of k-points of a separated and locally
of finite type group scheme Pic(X) called the Picard scheme [Kle05, Theorem 4.8]. The
subgroup Pic0(X) is the group of k-points of the identity component Pic0(X). If X
is a normal proper variety, then Pic0(X) is projective [Kle05, Proposition 5.4, Remark
5.6]. If char(k) = 0, then Pic(X) is smooth and this is sufficient for Pic0(X) to be an
abelian variety. If char(k) > 0, then there is a connected smooth projective surface X
such that Pic(X) is not smooth, hence in this case Pic0(X) is not an abelian variety
[Kle05, Remark 5.15].

Theorem 1.0.3. If X is a normal proper variety, then NS(X) is a finitely generated
abelian group.

Proof. [LN59, Theorem 2].

Example 1.0.4. If X is a normal proper toric variety, then Pic(X) = NS(X). Indeed, if
Pic0(X) would be a nontrivial abelian variety, it would produce an uncountable supply
of line bundles over any uncountable algebraically closed extension field of k, but for
toric varieties we have seen that Pic(X) is countable.

If L is an ample invertible sheaf and algebraically equivalent to L′, then L′ is ample. So
there is a well-defined notion of ample elements of NS(X).

Definition 1.0.5. The ample cone Amp(X) of X is the cone in N1
R(X) generated by

ample invertible sheaves in NS(X).

2 Projective GIT

The main reference for this part is [Hos12, §4]
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2.1 Motivation

If we want to construct a GIT quotient of a projective k-scheme X, the following question
comes to mind: Can we define reasonable quotients of X by gluing GIT quotients of G-
stable affine open subschemes?
These quotients can be constructed, but the result might not be separated. This is
illustrated by the following example.

Example 2.1.1. Let X := A2 \ {0} equipped with the action of Gm = Spec(k[t, t−1])
by t · (x, y) := (tx, t−1y). The subspaces D(x), D(y) and D(xy) are Gm-stable and we
can easily calculate their affine GIT quotients:

k[D(x)]Gm = k[x, y, x−1]Gm = k[xy]
k[D(y)]Gm = k[x, y, y−1]Gm = k[xy]

k[D(xy)]Gm = k[x, y, x−1, y−1]Gm = k[xy, (xy)−1]

Gluing them together, we obtain A1 with a double origin, which is not separated!

Our strategy will thus be to take the Proj of invariants of a graded ring.

2.2 Recollections on projective geometry

We recall the basic features of the Proj construction. For every graded k-algebra A,
which we will assume to be finitely generated, we can associate a scheme Proj(A) whose
points are given by homogeneous prime ideals of A, which do not contain the irrelevant
ideal A+ :=

⊕
n>0 An. We call a k-scheme of the form Proj(A) semiprojective. When

A = k[x0, . . . , xn], we have Pn = Proj(A).
This construction is not a functor to k-schemes: If f : A → B is a map of graded
k-algebras, we get a map of k-schemes Proj(B) \ V (f(A+)) → Proj(A). When f is
surjective, then V (f(A+)) = ∅ and the map Proj(B) → Proj(A) is a closed immersion.
If X is a k-scheme and L is a line bundle on X, define for a section s ∈ H0(X, L) the
set Us ⊆ X as the set of points x ∈ X, which have an open neighborhood V , such that
OV → L|V , a 7→ as is an isomorphism and Vs := X \ Us. In particular s defines a
trivialization of L on Us. In that situation, we can see s as a local coordinate of X on
Us and we have a morphism Us → A1 defined by s. If

⋂
s∈H0(X,L) Vs = ∅, we say that L

is basepoint-free.

Definition 2.2.1. An invertible sheaf L on X is very ample, if there exists some n ≥ 0
and an immersion φ : X → Pn, such that L ∼= φ∗OPn(1). We say, that L is ample if
there exists some d ≥ 1, such that L⊗d is very ample.

X is projective if and only if X is proper and admits a very ample line bundle [Har77,
Remark II.5.16.1].
We define the ring of sections of a line bundle L as

R(X, L) :=
∞⊕

n=0
H0(X, L⊗n)

If X is projective and L is an ample line bundle on X, then the induced map

X → Proj(R(X, L))

is an isomorphism [Sta19, 0C6J].
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2.3 Linearisation

Let G be a reductive group over k, which acts on a projective k-scheme X. Recall, that
this action is given by a map of k-schemes

a : G × X → X

which satisfies the axioms of a group action in the category of k-schemes.
On An+1 there is a natural action of GLn+1 which carries lines into lines. So this
action descends to an action of PGLn+1 on Pn. If X can be G-equivariantly embedded
as a closed subscheme into Pn, then we say that the action on X is linearised by the
embedding. In algebraic terms such an action is especially simple: G acts linearly on the
n + 1-dimensional vector space spanned by x0, . . . , xn and the action on Pn is given by
the induced action on Proj(Sym(V )).
We now explain what we mean by a G-action on a line bundle.

Definition 2.3.1. Let L be a line bundle on X and assume that X is equipped with a
G-action. A G-linearisation on L is an isomorphism

Φ : a∗L → pr∗
2 L

such that
(m × idX)∗Φ = π∗

23Φ ◦ (idG ◦a)∗Φ
If L is (very) ample, we speak of a (very) ample linearisation.

The cocycle condition becomes more transparent when we look at elements of G(k). For
g ∈ G(k) and ig : X → G × X, x 7→ (g, x) we get an isomorphism φg := i∗

gΦ : g∗L → L.
Using (m × idX) ◦ (idG ×ih) ◦ ig = igh, we get

φgh = i∗
ghΦ = i∗

hΦ ◦ h∗i∗
gΦ = φh ◦ h∗φg

for g, h ∈ G(k).

Example 2.3.2.

1. A natural G-linearisation on Pn is given by the canonical bundle ΛnΩPn/k =
OPn(−(n + 1)) where the action on differential forms is given by (g−1)∗.

2. We will later be interested in the case of a linearisation on a trivial line bundle. Such
a linearisation can be defined by a character χ : G → Gm. The map φ∗

gOX → OX

can be defined by φg(s)(x) := χ(g)s(g−1x). We denote by Lχ the structure sheaf
with G-action determined by a character χ.

3. Tensor products and inverses of linearisations carry a natural linearisation.

Theorem 2.3.3. Let G be a smooth connected linear algebraic group, which acts on
a normal variety X. Then there is some d ≫ 0, such that for all line bundles L, there
exists a G-linearisation on L⊗d.

We give a variant of the argument in [Bri18, Theorem 5.2.1] only when X is projective.
The following argument also does not show that d can be chosen independent of L. How-
ever, if X is toric we could use that the Picard group is finitely generated (Theorem 1.0.3
and Example 1.0.4) to make d independent of L.

Proof when X is projective. We want to use the following facts without proof: Pic(G) is
finite [Bri18, Proposition 5.1.3] and Pic(G × X) = Pic(G) × Pic(X) [Bri18, Proposition
5.1.2].
We may assume that L is very ample. The pullback a∗L is isomorphic to π∗

1M ⊗ π∗
2L

for some line bundle M on G. Replacing L with a high enough tensor power we may
assume that a∗L and π∗

2L are isomorphic.
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We choose any isomorphism Φ : a∗L ∼= pr∗
2 L. This provides us for every g ∈ G(k) with

an isomorphism g∗L ∼= L. Since X is projective, such isomorphisms are unique up to a
scalar in H0(X, g∗L ⊗ L∗) = k. So we obtain a k-homomorphism G → PGL(H0(X, L)),
which induces an equivariant embedding ϕ : X → P(H0(X, L)), such that L = ϕ∗O(1).
To make this argument precise in a scheme-theoretic way, we may argue as follows: Since
the global sections of G × G × X are k[G × G] and automorphisms of line bundles on
G × G × X are given by k[G × G]×, we may define a family of scalars η ∈ k[G × G]× by
the equation

(m × idX)∗Φ = η · π∗
23Φ ◦ (idG ◦a)∗Φ

to measure the failure of the cocycle condition. Using η we can write down a k-morphism
G → GL(H0(X, L)), which is a homomorphism to PGL(H0(X, L)).

2.4 Projective GIT

Let G be a reductive group over k. If L is a linearisation of a semiprojective G-scheme X,
then the action G on R(X, L) preserves the grading. So R(X, L)G is a graded ring and
is finitely generated by Nagata’s theorem. Thus Proj(R(X, L)G) is a semiprojective k-
scheme. If X is projective, then Proj(R(X, L)G) is projective. This leads to the following
definition.

Definition 2.4.1. Let X be a semiprojective k-scheme with G-action and an ample
linearisation L. We define the GIT quotient of X by G with respect to L as

X �L G := Proj
( ∞⊕

n=0
H0(X, L⊗n)G

)

The inclusion R(X, L)G ⊆ R(X, L) induces a rational map

X 99K X �L G

and we define the semistable locus Xss as the complement of the null cone in X relative
to this rational map.

Definition 2.4.2. A closed point x ∈ X(k) is

1. semistable, if there is a section s ∈ H0(X, L⊗r)G for some r > 0, such that s(x) ̸= 0,

2. stable, if dim Gx = dim G and there is a section s as in (1), such that and the action
of G on Xs = {x ∈ X | s(x) ̸= 0} is closed,

3. polystable, if Gx is closed in Xss,

4. unstable, if x is not semistable.

Definition 2.4.3. [Hos12, Definition 2.36] A map φ : X → Y of finite type k-schemes
where X is equipped with an action of a reductive group G is a good quotient, if the
following hold.

1. φ is G-equivariant for the trivial action on the target.

2. φ is surjective.

3. If U ⊆ Y is open, then OY (U) → OX(φ−1(U)) is an isomorphism onto OX(φ−1(U))G

4. W ⊆ X is a G-invariant closed subset, φ(W ) is closed in Y .

5. If W1 and W2 are disjoint G-invariant closed subsets of X, then φ(W1) and φ(W2)
are disjoint.
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6. φ is affine.

Caution: Definition 2.4.3 does not coincide with Alper’s definition [Alp09, Definition 4.1]
of [X/G] → Y being a good moduli space. The condition of the pushforward along this
map being exact cannot be satisfied in positive characteristic as taking invariants is not
exact.

Theorem 2.4.4. πL : Xss → Y := X �L G is a good quotient.

We follow the proof of [Hos12, Theorems 4.8, 4.11].

Proof. For f ∈ RG
+ the localization Xss

f = Spec(R[ 1
f ]) is affine and RG[ 1

f ] = R[ 1
f ]G.

Moreover the affine opens Yf = Spec(R[ 1
f ]G) cover Y . The map Xss

f → Yf is a good
quotient, as we have seen in talk 3, see [Hos12, Theorems 3.14]. It follows, that πL is a
good quotient Zariski locally on the target. This implies that πL is a good quotient.

We denote by Xps the set of polystable points in Xss(k). We say, that two points
x, x′ ∈ Xss are S-equivalent, if their orbit closures meet in Xss.

Theorem 2.4.5. The map Xps/G(k) → (X �L G)(k) induced by πL is bijective.

We follow the proof of [Hos12, Theorems 4.30].

Proof. By the definition of polystable points the orbit closures of two points x, x′ ∈ Xps

meet if and only if x and x′ lie in the same orbit. We have seen before, that closed orbits
biject with k-points of Y .

2.5 Toric varieties as GIT quotients

The last goal of our talk is to show that toric varieties coming from polyhedra can be
constructed as GIT quotients of an affine space by a torus action. The main reference is
[CLS11, §14.2].
This time we start with a lattice M , which shall be identified with the character lattice
of a torus T . Let P be a polyhedron, i.e. a convex set generated by a finite set in
MR := M ⊗Z R.
Recall that the toric variety associated to P is given by

XP := Proj
( ∞⊕

n=0
spank(nP ∩ M)

)
(1)

Denote by P (1) the set of facets of P , i.e. the set of codimension 1 faces. They correspond
to dimension 1 subvarieties of XP , which we will see as prime divisors DF .
A facet F of P can be written as

F = {m ∈ P | ⟨m, uF ⟩ = −aF }

for some uF ∈ M∨ and aF ∈ MR.
The family of elements (uF )F ∈P (1) determines a homomorphism

M → X∗(GP (1)
m ), m 7→ ((tF )F 7→

∏
F

t
⟨m,uF ⟩
F ).

Dually this determines a map of tori GP (1)
m → T and we define a torus G as the kernel

of this map. We have a left exact sequence

1 → G → GP (1)
m → T
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which is also right exact if XP has no torus factor, i.e. is not of the form Y × Gr
m for

some toric variety Y and r > 0 [CLS11, Proposition 3.3.9]. We will assume now that XP

has no torus factor and identify M with a subgroup of ZP (1), via j : M → ZP (1), m 7→
(⟨m, uF ⟩)F .
For an arbitrary Weil divisor D =

∑
F cF DF of XP the polyhedron associated with D is

PD = {m ∈ P | ∀F ∈ P (1) : ⟨m, uF ⟩ ≥ −cF }

Further, D determines a homomorphism

GP (1)
m → Gm, (tF )F 7→

∏
F

tcF

F

and thereby a character θD : G → Gm.
In the following we will denote the GIT quotient with respect to LθD

by �D.

Theorem 2.5.1. AP (1) �D G = XPD
.

Further, if D is ample, then XPD
= XP .

Proof. The coordinate ring O(AP (1)) is generated by variables xF for each facet F ∈ P (1)
and the coordinate g = (t1, . . . , tP (1)) ∈ GP (1)

m shall act on xF by g · xF := t−1
F xF .

By definition

AP (1) �D G = Proj
( ∞⊕

n=0
H0(AP (1), L⊗n

θD
)G

)
The line bundle L⊗n

θD
is trivial with G-action through θn

D. So we get twisted invariants
H0(AP (1), L⊗n

θD
)G = k[x1, . . . , xP (1)]GθD

in degree n, where g · xi = θn
D(g)t−ixi, where

i ∈ NP (1)
0 . As a vector space k[x1, . . . , xP (1)]GθD

is spanned by monomials xi =
∏

F xiF

F ,
such that n(cF )F − i ∈ j(M), so we have

k[x1, . . . , xP (1)]GθD
=

⊕
m∈M

ncF +⟨m,uF ⟩≥0
∀F ∈P (1)≥0

k ·
∏

F ∈P (1)

xncF +⟨m,uF ⟩ = spank(nPD ∩ M)

and this is precisely the degree n part of the homogeneous coordinate ring of XPD
as in

Equation (1).

We close the talk with an example of Theorem 2.5.1.

Example 2.5.2 (Hirzebruch surface). The Hirzebruch surface X := P(O ⊕ O(1)) over
P1 is isomorphic to XP for the following polyhedron P in R2 and the lattice M := Z2.

(1, 0)F1(0, 0)

F2

(0, 1) F3 (2, 1)

F4

The faces are given by
Fi = {m ∈ P | ⟨m, ui⟩ ≥ −ai}

where
u1 =

(
0

−1

)
, u2 =

(
−1
0

)
, u3 =

(
0
1

)
, u4 =

(
1

−1

)
,

a1 = a2 = 0, a3 = a4 = −1.
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The injection M ↪→ Z4 is given by 
0 −1

−1 0
0 1
1 −1


The lattice M cuts out the closed subgroup G as the subtorus

G = {(t1, t2, t3, t4) ∈ G4
m | t−1

2 t4 = 1; t−1
1 t3t−1

4 = 1}.

To each facet Fi we attach a T -invariant divisor Di := DFi
. Recall that there is a

bijection between T -invariant divisors of codimension 1 and facets. The divisor D1 + D2
is ample, so A4 �D1+D2 G recovers XP .
The quotient A4 �D1 G is isomorphic to P2 and exhibits the map X → A4 �D1 G as a
blowup of P2.
The quotient A4 �D2 G is isomorphic to P1 and the map X → A4 �D2 G corresponds to
the natural projection map.
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