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By category we mean an ordinary l-category. By an oco-category we mean an (oo, 1)-
category with a possibly large class of objects, but small simplicial sets as Hom spaces.

1 Animation

1.1 Sifted indization

Recall, that a nonempty simplicial set K is sifted, if the diagonal K — K x K is cofinal
[Lur09, Definition 5.5.8.1]. We refer to a colimit over a sifted diagram as a sifted colimit.
We refer to the analogous 1-categorical notion as a 1-sifted category. The fundamental
examples of sifted diagrams are:

1. N(A®P) is sifted [Lur09, Lemma 5.5.8.4]. Colimits over it are called geometric
realizations.

2. Every filtered diagram is sifted. [Lur09, Example 5.5.8.3]

Sifted colimits commute with finite products [Lur09, Lemma 5.5.8.11].

Definition 1.1. Let C be a small co-category which admits finite products and let D be
an oo-category. We denote by Fun'(C, D) the full subcategory of Fun(C, D) spanned by
functors which preserve finite products.

We denote by Ani the oo-category of Kan complexes / oo-groupoids / anima / spaces.
Definition 1.2. Let C be a small co-category with finite coproducts. We define the
sifted indization as sInd(C) := Fun™(C, Ani).

Similarly, we define 1-sInd where we assume C to be an ordinary category and replace
Ani by Set.

sInd is the free cocompletion under sifted colimits:

Proposition 1.3. Let C be a small co-category which admits finite coproducts and let
D be an oco-category which admits sifted colimits. Let Fun™(sInd(C), D) denote the full
subcategory of functors spanned by functors which preserve sifted colimits. Then the

functor
Fun®(sInd(C), D) — Fun(C, D)

induced by restriction along the Yoneda embedding C — sInd(C) is an equivalence of
oo-categories.

Proof. [Lur09, Proposition 5.5.8.15]. O

Lemma 1.4. Limits and sifted colimits in sInd(C) are computed objectwise. In partic-
ular, the inclusion sInd(C) — PSh(C) preserves and reflects limits and sifted colimits.

Proof. This follows, as limits and sifted colimits commute with finite products. O

In the presence of finite coproducts, sifted colimits are generated by filtered colimits and
geometric realizations in the following sense:



Lemma 1.5. Let C be a small oo-category with finite coproducts and let X € PSh(C).
The following are equivalent:

1. X belongs to sInd(C).
2. There is a simplicial object U : N(A°P) — Ind(C) whose colimit in PSh(C) is X.

Proof. This is [Lur09, Lemma 5.5.8.14]. O

The condition of having finite coproducts can probably not be relaxed, see [ARV10] for
counterexamples in the 1-categorical setting.

Definition 1.6. An object X of an co-category C is compact projective if Home (X, —)
preserves sifted colimits. We denote the full subcategory of compact projective objects
by C°P.

1.2 Animation

We recall basic properties of animation.
We say that an ordinary category C is 1-compact projectively generated if C admits small
colimits and the natural functor

1-sInd(C?) — C
is an equivalence. All 1-categories of interest to us will be 1-compact projectively gener-
ated.
For such categories it makes sense to give the following definition of a nonabelian derived

category.

Definition 1.7. Let C be a 1-compact projectively generated 1-category. We define the
animation Ani(C) as Fun™ ((C°P)°P, Ani).

Ani(C) is presentable, [Lur09, Theorem 5.5.1.1, Proposition 5.5.8.10 (1)].

Ani(C) can also be defined as the localization of a model structure on simplicial objects
of C, [Lur09, Corollary 5.5.9.3].

Since truncation of anima commutes with finite products, we obtain functors m<,, :
Ani(C) — Ani(C) by applying m<,, objectwise to anima. By [Lur09, Remark 5.5.8.26]
this truncation coincides with the usual definition of truncation. We see directly that C
can be identified with the O-truncated objects of Ani(C).

There is a natural functor C = Fun'((C?)%, Set) — Fun'((C°?)°P, Ani) = Ani(C) in-
duced by the functor Set — Ani which sends a set to the simplicial set it generates in
degree 0.

Given a functor F' : C — D of ordinary categories, which preserves sifted colimits, we
have the following commutative diagram.

cC® —— D
Ani(C) —— Ani(D)
Uy Uy
Cc—D
The square where C? in the upper left corner is replaced with C is in general not com-

mutative! As a counterexample, one can consider C = D = Ab and a tensor product
with a non-torsionfree abelian group.



Animation of functors does in general not commute with composition. We refer to [CS23,
Proposition 5.1.5] for a criterion.

Lemma 1.8. Limits and filtered colimits of n-truncated objects of Ani(C) are n-truncated
(n>0).

Proof. This follows from Lemma 1.4 and the corresponding statement about anima. [

2 Animated commutative rings

By definition an animated commutative ring is an object of Ani(CRing) = sInd(CRing*?).
However, unlike for sets, groups, abelian groups or modules, the category CRing is
difficult to understand: CRing®® contains more than just polynomial rings. See MO
219938 for an example.

The following Lemma will allow us to work with a subcategory of C°P, which will simplify
proofs involving animation.

Lemma 2.1. Let C be a 1-compact projectively generated category and let C' C C°P be
a full subcategory, which generates C under sifted colimits. Then the induced functor
sInd(C’) — Ani(C) is an equivalence.

Proof. Since C°P is a full subcategory of Ani(C), it follows that Ani(C) is generated under
sifted colimits by C’. The Lemma now follows from [Lur09, Proposition 5.5.8.22]. O

We define the 1-category Poly as the (small) 1-category with objects Z[z1,...,x,] for
n > 0, and ring homomorphisms as morphisms. Clearly Poly admits finite coproducts,
consists of compact projective objects of CRing and generates CRing.

So, the natural functor
Fun' (Poly®?, Set) — CRing

is an equivalence.

Thanks to Lemma 2.1, we also have an equivalence

sInd(Poly) ~ Ani(CRing).

3 Comparison with E.-rings
There is a natural functor
© : Ani(CRing) — CAlgy,

which is induced by the universal property of sInd(Poly) = Ani(CRing) applied to the
natural inclusion functor Poly — CAlgy,.

Proposition 3.1. The functor © preserves small limits and colimits, is conservative and
induces an equivalence Ani(CRing)g, — CAlgg, .

Proof. [Lurl8, Proposition 25.1.2.2]. O

Warning: The polynomial ring Z[x] does not map to a compact object in the (oo, 1)-
category of E,.-rings.


https://mathoverflow.net/questions/219938/what-are-retracts-of-polynomial-rings
https://mathoverflow.net/questions/219938/what-are-retracts-of-polynomial-rings

4 Modules

Definition 4.1 (Modules, via animation). We define Mod as the category of pairs
(A, M), where A is a commutative ring and M is a module over it, with the obvious
notion of morphisms. The functor Mod — CRing, (A, M) — M preserves sifted colimits
and we can consider the animation Ani(Mod) — Ani(CRing). For A € Ani(CRing), we
define Mod%™ as the fiber! over A.

As for Ani(CRing), we want to have a smaller system of compact projective generators.

Lemma 4.2. Pairs of the form (Z[z1, ..., 2], Z[z1, ..., 2,]™) generate Mod under sifted
colimits. We denote the full subcategory by PolyMod.

Proof. For a pair (A, M) € Mod, we first write A as a sifted colimit of polynomial rings.
This reduces to the case that A is a polynomial ring. Then we write M as a sifted colimit
of finite free A-modules. O

If A is static, then Mod%" ~ Ani(ModZ), where Modcj is the category of classical A-
modules.

We claim that the category of connective ©(A)-modules is canonically equivalent to the
category of animated A-modules.

Proposition 4.3. Modg 4 ~ Mod?¥.

Proof. This is explained in [Lurl8, §25.2.1]. The idea is to define a category SCRMod,
which consists of pairs (A, M), where A € Ani(CRing) and M is a ©(A)-module.
Then prove that the natural inclusion PolyMod — SCRMod induces an equivalence
Ani(Mod) ~ SCRMod". O

In light of the above definition it makes sense to write Moda := Modg(4). We want
to equip Mod’%" with a derived tensor product, generalizing the derived functor of the

tensor product in case A is static. There are two possible definitions:

Definition 4.4 (Tensor product, via Ex-rings). Let A € Ani(CRing). Then we define
—®4 —: Modg X Moda — Mod 4 as the tensor product of ©(A)-modules.

Definition 4.5 (Tensor product, via animation). Let Mod? be the 1-category, which
consists of triples (A, My, My), where A is a commutative ring and My, My are A-modules.
Then the usual tensor product defines a functor ® : Mod? — Mod, (A, M, M) —
(A, M1 ®4 Ms). We define the tensor product of animated rings as the animation

Ani(®) : Ani(Mod?) — Ani(Mod)

These two definitions are actually equivalent. This comes down to checking that the
tensor product functor SCRMod? — SCRMod in the operadic sense restricts to the
usual tensor product on finite free objects.

As opposed to the situation for E,.-rings, where we can just take a tensor product of
modules, the tensor product of animated commutative rings must be defined separately.
The idea is the same as in Definition 4.5.

For an oco-category C, we denote by Span(C) the category of spans of C, that is diagrams
of the form y < x — z. It can be defined as a functor category in the evident way.

Lemma 4.6. Ani(Span(CRing)) ~ Span(Ani(CRing)).
IFormally, we take the fiber product of * — Ani(CRing) < Ani(Mod) in Cateo.




Proof. The idea is the same as in Lemma 4.2. By Lemma 2.1 we need to check that the
finite free objects of Span(Ani(CRing)) generate it under sifted colimits. Given a span
(B + A — (O), we first write A as a sifted colimit of polynomial rings, reducing to the
case that A is a polynomial ring. We then write B as a sifted colimit of polynomial rings
over A, and do the same for C. O

Definition 4.7. We define the tensor product functor
® : Span(CRing) — CRing, (B+ A—C)—~ B®4C
The tensor product of animated rings is defined as the animation
Ani(®) : Ani(Span(CRing)) — Ani(CRing)
composed with the equivalence of Lemma 4.6.

We could also have defined the tensor product of animated commutative rings directly
as a pushout:

Lemma 4.8. The tensor product B®4C as in Definition 4.7 is a pushout in Ani(CRing).

Proof. Using Lemma 2.1, we need to check that the restriction of the pushout functor
Span(Ani(CRing)) — Ani(CRing) to the finite free objects is given by the usual tensor
product. This is clearly the case. O

It follows from this Lemma and cocontinuity of ©, that ©(B ®4 C) ~ ©(B) ®g(4) O(C).

We close the discussion of tensor products by mentioning a useful spectral sequence for
computations of tensor products:

Proposition 4.9. Given maps of animated commutative rings B + A — C (or Eo.-
rings) there is a convergent homological spectral sequence

Ey" = TorT* ™ (n,(B), 7 (C)); = msst(B®4 C)

Proof. [Lurl8, Remark 25.1.3.1]. O

5 Localization

We want to discuss localizations of animated rings in preparation for the construction
of the derived spectrum of an animated ring in talk 5. One can deduce existence of
general localizations quickly from the representability theorem, but we want to give a
more concrete description of the standard Zariski localizations.

[Lur04, Example 3.4.8] [CS23, §5.1.7]

Definition 5.1. Let A € Ani(CRing) and let s € mgA. We define A[s™!] := A @z
Z[z*Y], where z > s.

Proposition 5.2. Let A and B be animated rings, let s € mgA. Then the natural map
A — A[s™!] induces an equivalence of anima

571 —
Hom?} i (CRing) (4, B) ~ Homni(cring) (A[s '], B)

where HomZ;li(CRing) denotes the full subanima of maps f : A — B, such that f(s) is
invertible in o B.

Proof. Define Z[z] — A, z +— s. In the diagram



HomSA_ni(CRing) (A7 B) I HomAni(CRing) (A7 B)

J

HomAni( Ring) (Z[‘ril]a B) — HomAni(CRing) (Z[(E], B)

| |

7T()(.B)>< 71'0(3)

the outer square is cartesian by definition. The lower square is cartesian, since
HomAni(CRing) (Z[xil]a B)

can be seen an as the fiber over zero of the map B? — B, (b,b') — bb'—1. This can be seen
by writing Z[z*!] as a pushout of Z < Z[z] — Z[z,y] mapping z +— 0 and z +— 2y — 1.
The dotted arrow can then be defined by the universal property. We conclude that the
upper square is cartesian. The proof is finished by Lemma 4.8. O

6 Derived symmetric power functors

The forgetful functors CRing — Ab — Set admit left adjoints. Via animation these
promote to left adjoints of the forgetful functors

Ani(CRing) — Ani(Ab) — Ani

The left adjoint Ani(Sym) : Ani(Ab) — Ani(CRing) is called the derived symmetric
power functor.

To ease the notation we will write Sym instead of Ani(Sym).

Example 6.1.

1. Sym(Z") = Z[x1,...,xy,]. This follows by composing the left adjoints above.

2. Sym(Z[1]) = Z ® Z[1]. This follows by writing Z[1] as a pushout, using that Sym
is cocontinuous and computing the result as a derived tensor product of modules.
The right hand side can be interpreted as the associated graded homotopy ring, in
which multiplication of two elements in degree 1 is zero.
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